首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   62篇
  国内免费   303篇
安全科学   50篇
废物处理   49篇
环保管理   45篇
综合类   475篇
基础理论   87篇
污染及防治   136篇
评价与监测   98篇
社会与环境   3篇
  2023年   17篇
  2022年   10篇
  2021年   27篇
  2020年   26篇
  2019年   15篇
  2018年   25篇
  2017年   20篇
  2016年   35篇
  2015年   39篇
  2014年   47篇
  2013年   47篇
  2012年   51篇
  2011年   58篇
  2010年   57篇
  2009年   49篇
  2008年   41篇
  2007年   55篇
  2006年   49篇
  2005年   35篇
  2004年   39篇
  2003年   40篇
  2002年   35篇
  2001年   20篇
  2000年   17篇
  1999年   19篇
  1998年   14篇
  1997年   16篇
  1996年   13篇
  1995年   9篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
排序方式: 共有943条查询结果,搜索用时 15 毫秒
121.
萃取膜生物反应器处理苯酚废水的试验研究   总被引:2,自引:0,他引:2  
戴宁  张晟禹  张凤君  李隋  赵文生 《环境科学》2008,29(8):2214-2218
从经过驯化的活性污泥中筛选出苯酚降解菌.制备成菌悬液,对比活性污泥体系和菌悬液体系的萃取膜生物反应器(EMB)对苯酚废水的处理效果,考察了料液苯酚浓度、反应器温度等因素对膜萃取速率及生物降解效果的影响.结果表明,通过以苯酚为唯一碳源,逐渐提高苯酚浓度的方法对活性污泥进行驯化.当进水苯酚浓度为700 mg·L-1时,苯酚去除率达99%以上;适当提高反应器温度和料液初始浓度有利于提高膜萃取速率;当初始料液苯酚浓度为2000 mg·L-1时,膜萃取速率高于生物降解速率,生物相中产生苯酚积累;菌悬液体系EMB的生物膜厚度明显小于活性污泥体系,且水力反冲洗可有效控制生物膜厚度.对苯酚生物降解产物的GC-MS分析结果表明,苯酚的生物降解较彻底,基本无苯酚中间产物的残留.  相似文献   
122.
选用西北地区砂土为供试土壤,苯酚作为实验模拟研究的有机污染物,在电动修复技术的基础上加入超声波,联合降解土壤中的苯酚污染物。结果表明,电动技术修复苯酚污染土壤时,加入超声波有利于苯酚的迁移和富集。含水率的增加可以使苯酚的迁移距离增大,当土壤含水率为16%时,富集量可达到153%。超声波的声强可以使苯酚的迁移幅度增大,最大富集率可达到105%。因此,电动法联合超声波降解苯酚效果显著,具有良好的应用前景。  相似文献   
123.
利用AA3流动注射分析仪,同时对地表水中的挥发酚和氰化物进行测定,分析流程中使用了在线恒温蒸馏器。同传统的分析方法相比,本法分析测定数据准确、可靠、高效,大大缩短了测定时间,只需将两种标准配制成混合标样,一次取样完成两个项目的测定。回收率为90%~110%,相关系数达到0.9992以上。  相似文献   
124.
通过使用Lachat流动注射分析仪测定环境水样中的四个常规项目总磷、总氮、挥发酚和总氰来介绍兀A技术在水质分析领域的应用。实验结果表明,各项目的标样测定值均在保证值范围之内,相对标准偏差在0.2%-3.7%之间。方法的精密度及准确度较好,加标回收率在91%-102%之间,满足水质监测实验室质量控制的要求。  相似文献   
125.
本文研究了厌氧方法驯化的活性污泥中筛选出的一株活力苯酚厌氧降解菌降解苯酚的最佳条件。结果为:在基础选择培养基中以1.0g(NH4)2SO4作为氮源并且在1 L培养基中加入1 mL微量元素储备液,调节培养基pH值为6.9-7.2,有利于C. albicans PDY-07降解苯酚。  相似文献   
126.
氧化处理水中典型酚类污染物研究进展   总被引:1,自引:0,他引:1  
环境激素是一类能干扰人类和动物正常内分泌的外源性物质,对生物体的生理过程产生很大的危害。本文介绍了水处理中,典型酚类污染物氧化剂降解技术的机理、特点、应用以及局限性,主要介绍了Fenton试剂、O3、二氧化氯等氧化剂及高铁酸钾新型氧化剂在酚类废水处理中的应用。并指出了复合氧化剂、新型氧化剂与其他水处理技术的联合应用将是酚类废水氧化处理的发展方向。  相似文献   
127.
挥发性有机物(VOCs)是对流层臭氧和二次有机气溶胶等二次污染生成过程的关键前体物.研究VOCs的浓度水平、组成特征和反应活性对揭示复合型大气污染的形成机制具有重要意义.本研究利用在线气相-氢离子火焰法测量了2009年春节和"五一"节期间上海市城区大气中56种VOCs.结果表明,上海市城区大气受机动车尾气排放源影响明显,VOCs浓度日变化特征呈双峰状,与上下班交通高峰基本吻合.大气中VOCs平均体积分数为(28.39±18.35)×10-9;各组分百分含量依次为:烷烃46.6%,芳香烃27.0%,烯烃15.1%,乙炔11.2%.用OH消耗速率和臭氧生成潜势(OFP)评估了VOCs大气化学反应活性,结果表明,上海市城区大气VOCs化学反应活性与VOCs体积浓度相关性良好;VOCs活性与乙烯相当,平均化学反应活性较强;OH消耗速率贡献最大的物种是烯烃51.2%和芳香烃31.8%;OFP贡献最大的物种是芳香烃53.4%和烯烃30.2%;对臭氧生成贡献最大的关键活性物种为丙烯、乙烯、甲苯、二甲苯以及丁烯类物质.  相似文献   
128.
一种新型石墨电极的制备及其对苯酚的去除   总被引:3,自引:0,他引:3  
黄星发  郑正  王曦曦  方彩霞 《环境科学》2009,30(5):1408-1413
为了探索一种对有机废水处理有效、廉价、来源广泛、环境友好的电极,以石墨、环氧树脂、固化剂和丙酮为原料,研究制备了一种新型石墨电极 (NGE). 分别采用热水浸泡、乙醇溶液回流、丙酮回流、超声-丙酮回流以及电化学法对制备的石墨电极进行预处理,前三者效果较差,超声-丙酮回流可改善处理效果,但不够理想,电化学法可取得满意的效果.苯酚降解的UV光谱分析表明,尽管商品石墨电极 (CGE) 比NGE具有更高的苯酚氧化效率,但其电解液积累大量的苯醌,而NGE电解液中苯醌积累量少,并且电解过程中逐渐降低. NGE比CGE具有更好的TOC去除效果,两者TOC去除率分别为40%和31%. SEM分析结果表明,CGE被严重腐蚀,NGE无明显变化,表现出良好的稳定性.  相似文献   
129.
以海藻酸铝为主要包埋材料、纳米Al_2O_3为添加剂,包埋固定红平红球菌,制得纳米Al_2O_3固定化红平红球菌菌球,并将其用于苯酚的降解。表征结果显示:菌球内部包含丰富的菌丝体;内部孔径以中孔居多。实验结果表明:菌球的最优制备方案为0.05 g纳米Al_2O_3加入3 m L海藻酸钠溶液中、海藻酸钠质量分数6%、微生物包埋量0.5 m L/m L(以海藻酸钠溶液计)、Al_2(SO_4)_3质量分数3%;在初始苯酚质量浓度为400 mg/L、反应时间为24h、菌球加入量为8 g/L、反应p H为8.0、反应温度为30℃的条件下,菌球首次使用时可使苯酚完全降解,使用5次后的苯酚降解率仍达93%以上,具有良好的循环使用性。  相似文献   
130.
一株苯酚降解菌的筛选鉴定及响应面法优化其降解   总被引:6,自引:3,他引:3  
从某化工厂污水处理车间活性污泥中分离、筛选到一株能以苯酚为唯一碳源和能源生长的菌株YH8.基于形态特征、生理生化特性、BIOLOG细菌自动鉴定系统、16S rDNA和gyrB基因序列同源性分析鉴定菌株YH8,鉴定菌株YH8为Acinetobacter guillouiae.在苯酚浓度低于1200 mg·L-1,温度为26~34℃,pH为7.0~10.0时,菌株YH8培养60 h对苯酚的降解率达70%以上.运用单因素实验初步确定苯酚降解的最适外加碳源和氮源分别为山梨醇和NaNO3,最适温度为30℃,最适初始pH为9.0,最适接种量为5%.为了提高菌株YH8的降解率,首先利用Plackett-Burman实验设计评估并筛选出影响苯酚降解的3个关键因素为初始pH、苯酚浓度、山梨醇浓度.用最陡爬坡实验逼近以上3个因子的最大响应区域,采用Box-Behnken实验设计及响应面法分析,确定其最优降解条件为初始pH 9.26、苯酚浓度1163.63 mg·L-1、山梨醇浓度7.81%、接种量5%、NaNO_3浓度2%、温度30℃、培养时间96 h,在此条件下苯酚降解率可达98.95%.苯酚降解酶活性及酶定域实验表明,菌株YH8相关降解酶为胞内酶,且苯酚可诱导苯酚羟化酶(LmPH)和邻苯二酚1,2-双加氧酶(C_(12)O)的合成.通过降解酶特异性引物从菌株YH8扩增得到LmPH和C12O基因片段,经质粒检测和消除实验发现菌株YH8相关降解基因位于质粒上.此外,菌株YH8能耐受高浓度NaCl和多种重金属离子,对多种抗生素具有抗性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号